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Outline

• Sandia MEMS technology –SUMMiT V

• Layout of current mirror array/mirror structure

• Mirror performance
– Static

– Dynamic

– Optical (Mirror Figure)

– ZEMAX model of effect of mirror figure on system 
performance

• Some improved switching speed results

• Mirrors for QIP

• Conclusion



Optical MEMS at Sandia

Primary Technology:Primary Technology:

SUMMiT V with BEOL metallization SUMMiT V with BEOL metallization 

(Some III(Some III--V, SOI, etc.)V, SOI, etc.)

Projects Include:Projects Include:
• MEMS mirrors for optical beam forming 

(free space true time delay implementation) 

• MEMS mirrors for hyper spectral imaging 
(Hadamard Transform Spectral Imager )

• MEMS mirrors for fiber optic cross 
connect for diagnostics and state-of-the-
health  monitoring (OPAL)

• MEMS mirrors for adaptive optics (Ultra-
Light Weight Next Generation Telescope)

No real attempt yet to integrate electronics and No real attempt yet to integrate electronics and 

optical MEMSoptical MEMS……but study is ongoingbut study is ongoing



Process features

•Polycrystalline silicon (Poly)

•Low stress (< 5 MPa)

•Conformal depositions

•high fracture strength (~ 3 GPa)

•Ground plane layer (Poly 0)

•4 structural levels

•(Poly 1 - Poly 4)

•Chemical Mechanical 

Planarization (CMP)

•1 µm design rule

•Technology accessible through 

SUMMiT foundry (SAMPLES)

•Custom BEOL specific to this

program

•metallization

•packaging

SUMMiT V™ Technology
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** All PolySi is 
doped with 
Phosphorus **

2.0 µm SacOx3 (CMP)
0.4 µm Dimple3 gap

PECVD

0.3 µm MMpoly0

1.5 µm MMpoly2
0.3 µm SacOx2

Substrate 
6 inch wafer, <100>, n-type-

LPCVD

LPCVD

2.0 m sacox4 (CMP)2.0 µµµµm sacox4 (CMP)

2.0 µm SacOx1

0.5 µm Dimple1 gap

0.80 µm Silicon Nitride
0.63 µm Thermal SiO2

1.0 µm MMpoly1

2.25 µm MMpoly3

2.25 µm MMpoly4LPCVD

0.2 µm Dimple4 gap
PECVD 2.0 µm SacOx4 (CMP)

SUMMiT VSUMMiT V™™ - Sandia Ultra-planar 

Multi-level MEMS Technology



Sandia Beamformer Technologies

Hybrid Architecture Concept
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10x10 White Cell 
Mirror Array

SEM of Mirror Element

• Several possible approaches (fiber, magneto 
optical switch etc…) to implementation of optical 
time delay

• MEMS approach offers highest payoff
– Most hardware compressive 

– <6dB for 10-bit (revised to 6-bit) dc-20GHz (ultra 
low loss)

– Delays of 0.3-30nsec

• Demonstrated performance
– 10 µs switching for >100 µm mirror

– Tri-stable operation (-10°, 0°, +10°)

– 109 cycles without failure on packaged arrays

• System demonstration of selected time delays in 
0.2 – 20 nsec range with 1.25 psec resolution (with 
OSU)
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10x10 Mirror MEMS Array

E-W tilt

N-S tilt
2 SUMMiT modules, 208 pin package



Mirror3, P0 through P3 Mirror3, P0 through Metal

Mirror3 end view, P0 through Metal

P4 landing 

stub (1 of 4)

P0 electrode 

(1 of 2)

+10º-10º

3-D view of the mirror



MEMS Array Image



Static Voltage Response of Five Mirrors
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• Good uniformity between mirrors

• Hard stops at ±10° ensure insensitivity to bias voltage
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Switching speed
• Switched bearing to bearing (-10º to +10º)

• Switching speed determined by time to traverse 10% to 90% 
of total angular swing

• Simple square waves applied to left and right pads 180º out of 
phase - nothing fancy

• Fastest response times most likely limited by unoptimized 
drive and detection electronics – new electronics underway

Tilting 

MEMS 

mirror

HeNe laser

Position sensitive 

detector (PSD)

Oscilloscope Temperature/vacuum 

chamber



Bearing to bearing switching speed 

(-10º to +10º)

Driven by square waves of increasing amplitude
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Switching speed vs. applied bias
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Modified vs. standard waveforms
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Refinements in switching speed
•Switch 10º to 0º - problem with ringing 

at 0º

•Electrostatic damping to remove ringing 

(modified vs. standard waveforms)

•Different switch structure: switch 

angles   -2.5º to +2.5º

•Also possible bearing to bearing 

switching with soft landing – hit the 

substrate at 0 velocity without 

sacrifice in switching speed



Surface Quality of Mirrors

100 nm Al

50 nm Au• Characterized mirror surfaces to predict the impact on 

system performance 
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Mirror Surface Quality
Initial Process A

initial  A B C D
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Temperature and high optical 

power effects

heating
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polysilicon mirror

WYKO “through-
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objective

Si

Heater Element
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Vacuum chamber 
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Influence of mirror roughness
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Starting point for quartic cell model

• Beam is always started at first MEMS mirror

• 50 micron diameter, 0.02 NA beam from 5X 

magnification of 10 micron, 0.10 NA fiber

• Wavelength is 1.55 microns

MEMS

Array

Optical path for max delay



ZEMAX™ Model of White Cell

Efficiency = 0.76

Optics aberrations only

(Ideal MEMS mirrors)

Efficiency = 0.97

Al metallized MEMS 

aberrations only

Efficiency = 0.99

Au metallized MEMS 

aberrations only
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Modeled spot on the last MEMS mirror after acquiring maximum 
optical delay 10 bounces on MEMS mirrors



MEMS Package, Drive Electronics 

and Control Software

Research prototype drive electronics board

MEMS chip

packaged in a

208 pin PGA

Control software

A complete optical 

subsystem for laboratory 

demonstration

R
S
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MEMS/SFET Integration

• SFET (SUMMiT FET)

– WFO supported as risk mitigation task 

– Goal:  SUMMiT OMEMS w/ integrated 

NMOS electronics 

– Demonstrated actuation of 12 and 20 mirror 

arrays, scale up to 1600 element array 

(40x40) for brass board demo

Poly0 (gate)

Oxide

p-type substrate

MEMS polysilicon

N+ source & drain

SUMMiT FET 
cross-section

3x4 SFET mirror array 
w/ 3 transistors per cell

SFET driven mirror array (movie)

SFET driven 32x32 piston 

mirror array for AO 



Heterogeneous integration: vias

• Goal:  4096 SUMMiT mirrors w/vias bump 
bonded to underlying electronics 

• Demonstrated actuation of 4096 mirrors 
with linked vias

Movie of tilting mirror array 

interconnected by 4096 vias

SUMMiT
mirrors

Vias

Rad-hard 
CMOS
w/bumps Bump-bond, 

underfill & release

Filled
5µm wide x ~35 µm 

deep via

Large Integrated Optical MEMS array 
with under-pixel electronics

electrode

via

Individual tilting mirror



Faster MEMS mirrors designs

Mirrors varying from 20-250 mm, angles 1.5º-2.8º, 

designed for speeds 0.1 – 100 µsec 



Compound semiconductor waveguide MEMS

Waveguide Switch

•Tswitch~50µsec (350 µm guide)

• switch loss =0.8 dB

(w/o insertion loss)

• 4 V< bias <12 V 

Incomplete switching

16 ps

32 ps

64 ps

MSB = 128 ps

LSB = 1 

ps

2 ps

4 ps

8 ps

Applications: optical time delay, optical sensors, on-chip 

signal routing and multiplexing (especially if monolithically 

integrated with lasers and detectors)
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• Designed for R>98% for all 

angles

• Tilt angle ~ ±3.4°

• Predicted tilt bias 15>V>5 for 

300 µm long springs
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Conclusion

• Sandia is involved in a variety of optical MEMS programs

• Existing surface micro-machined MEMS mirrors switch in 10 µsec
– New designs for faster switching speeds (<0.1 µsec) currently in fab

– Advanced control algorithms for enhanced switching speeds and dynamic 
control have been implemented

• High reflectivity MEMS mirrors possible, but challenging for UV 
wavelengths
– Mirror figure can be controlled by post-processing techniques

– Mirror roughness can be controlled by appropriate process modifications

• Modeling of optical micro system performance including MEMS non-
idealities

• Drive electronics and control software for large numbers of independent 
high voltage channels available
– Interconnect scale-up problem currently being addressed by integrated 

electronics and by via approaches

• Advanced integration schemes involving MEMS in compound 
semiconductor materials promise the ultimate in monolithic integration: 
sources, detectors and MEMS on a single chip



MEMS do pop out of plane!
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